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ABSTRACT

QUALITY ENHANCEMENT OF COMPUTED TOMOGRAPHY IMAGES OF
POROUS MEDIA USING CONVOLUTIONAL NEURAL NETWORKS

Yıldırım, Ertuğrul Umut

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Assist. Prof. Dr. Guenther Glatz

February 2022, 43 pages

Computed tomography has been widely used in clinical and industrial applications
as a non-destructive visualization technology. The quality of computed tomography
scans has a strong effect on the accuracy of the estimated physical properties of the
investigated sample. X-ray exposure time is a crucial factor for scan quality. Ideally,
long exposure time scans, yielding large signal-to-noise ratios, are available if phys-
ical properties are to be delineated. However, especially in micro-computed tomog-
raphy applications, long exposure times constitute a problem for monitoring some
physical processes that are happening quickly. To alleviate this problem, this thesis
proposes a convolutional neural network approach for scan quality enhancement al-
lowing for a reduction in X-ray exposure time while improving signal-to-noise ratio
of the scanned image simultaneously. Moreover, the impact of using different loss
functions, namely the mean squared error and the structural similarity index mea-
sure, on the performance of the network is analyzed. Both the visual and quantitative
assessments show that the trained network greatly improves the quality of low-dose
scans.

Keywords: convolutional neural networks, computed tomography, denoising
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ÖZ

EVRİŞİMLİ SİNİR AĞLARI KULLANARAK GÖZENEKLİ ORTAMIN
BİLGİSAYARLI TOMOGRAFİ GÖRÜNTÜLERİNİN KALİTESİNİN

İYİLEŞTİRİLMESİ

Yıldırım, Ertuğrul Umut

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Guenther Glatz

Şubat 2022, 43 sayfa

Bilgisayarlı tomografi, tahribatsız bir görselleştirme teknolojisi olarak klinik ve en-
düstriyel uygulamalarda yaygın olarak kullanılmaktadır. Bilgisayarlı tomografi tara-
malarının kalitesi, incelenen örneğin tahmini fiziksel özelliklerinin doğruluğu üze-
rinde güçlü bir etkiye sahiptir. X-ışınına maruz kalma süresi, tarama kalitesi için çok
önemli bir faktördür. İdeal olarak, fiziksel özellikler tanımlanacaksa, büyük sinyal-
gürültü oranları sağlayan uzun maruz kalma süresi taramaları kullanışlıdır. Ancak
özellikle mikro bilgisayarlı tomografi uygulamalarında uzun pozlama süreleri hızlı
gerçekleşen bazı fiziksel süreçlerin izlenmesinde sorun teşkil etmektedir. Bu sorunu
hafifletmek için, bu tez, taranan görüntünün sinyal-gürültü oranını aynı anda iyileşti-
rirken, X-ışını maruz kalma süresinde bir azalmaya izin veren tarama kalitesi geliş-
tirmesi için evrişimli bir sinir ağı yaklaşımı önermektedir. Ayrıca, ortalama karesel
hata ve yapısal benzerlik indeksi ölçüsü gibi farklı kayıp fonksiyonlarının kullanıl-
masının ağın performansı üzerindeki etkisi analiz edilmiştir. Hem görsel hem de ni-
cel değerlendirmeler, eğitimli ağın düşük dozlu taramaların kalitesini büyük ölçüde
iyileştirdiğini göstermektedir.

Anahtar Kelimeler: evrişimli sinir ağları, bilgisayarlı tomografi, gürültü giderme
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

X-ray computed tomography (CT) is a widely used imaging technique in the health-

care domain, largely because of its ability to provide a detailed insight into the human

body noninvasively. Computed tomography technology is not only used for diagnos-

tic purposes in radiology but also has been utilized in many industrial applications.

One of the examples of CT application in industry is the detection of flaws (e.g. voids,

cracks) in materials [10]. The technology has also been adopted for measurement

of components for a manufacturing process and quality testing of complex assem-

blies [29]. Reverse engineering is another important field in which CT scanning has

found applications [2].

Being a non-destructive technology, X-ray CT has also been widely used in various

geological fields. Application areas range from rock and soil mechanics to petroleum

geology [22]. Imaging 3D geometry of the mineral phase and the pore-space of reser-

voir rock at the pore scale is very useful in revealing the internal structure of the rock.

Especially in digital rock physics (DRP) applications, high resolution digital images

of porous media enable us to quantify some of the important rock properties such as

porosity, permeability and resistivity with the help of numerical simulations.

Figure 1.1 shows a typical digital rock workflow. There are several main steps in

the process. The first one is collecting a series of projections at different angles by

scanning of a specimen using a CT technology. Then, a reconstruction algorithm is

implemented to generate tomographic images, which are then used to create a 3D
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Figure 1.1: A typical digital rock workflow [27].

image of the sample. The next step is the segmentation of the reconstructed gray-

scale images to distinguish between the pore and solid grain space. Lastly, numerical

simulations are performed on the digital image of rock to identify the properties of

interest. Numerical simulation of fluid flow based on high-resolution tomographic

images of rock and prediction of permeability are presented in [23, 4].

The quality, resolution, and size of CT scans are of utmost importance when it comes

to measuring the upscaled rock properties accurately. For higher resolution scans,

X-ray micro-computed tomography (micro-CT) has been extensively benefited in the

area of DRP [1]. Contrary to conventional CT, micro-CT can provide images with a

voxel resolution as small as a few micrometers in size. There is a trade-off between

the resolution of the image and the physical size of the sample being investigated. The

higher the resolution of the scan, the smaller the size of the core sample [3]. Finer

resolution helps detect some details such as grain shapes and roughness, whereas the

size of the sample should be large enough to be representative for a particular rock

property.

Image quality is another crucial factor that affects the accuracy of the properties esti-

mated from CT data. There are many different artifacts that can deteriorate CT image

quality. These artifacts include noise, beam hardening, motion blur, ring and metal

artifacts, to name a few [5].

Increasing X-ray exposure time at each projection view would lead to longer imaging

time and higher radiation dose, thus giving rise to better image quality [14]. In medi-

cal domain, minimizing the associated radiation dose is especially important as it may

have a negative impact on patient’s health. When it comes to geoscience applications,

however, the radiation dose is not an issue. Nevertheless, high-density components of
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geomaterials cause more attenuation of X-rays, so higher exposure time is required

to obtain high-quality images. This necessitates prolonged acquisition times causing

a serious problem when certain processes happening too fast are to be monitored.

For example, in high-temperature experiments, it is hard to capture the dynamics

of certain reactive processes because of the fact that increasing the temperature re-

sults in an exponential rise in the rate of the chemical reaction. [12]. Thus, these

types of experiments require low exposure times for monitoring the process effec-

tively. Especially, in micro-CT technologies, the restriction of prolonged acquisition

times becomes more apparent as the time for completion of the scan may take several

hours. Nevertheless, lower exposure of X-ray flux makes the reconstructed images

noisier, which degrades the signal-to-noise ratio [7]. Therefore, one needs to apply

denoising methods to improve the quality of such CT images. Since noise reduction

causes the significant features of the image to get lost, preserving these features such

as edges, corners, and other sharp structures is extremely important while denoising

the image [11].

Various approaches have been proposed in the literature to improve the quality of low-

dose scans. One of those approaches is based on sinogram filtering and, therefore,

requires access to the projection data. In this method, noise removal filters are applied

to raw data before a reconstruction algorithm such as filtered back-projection [18, 21].

Usually, it is difficult to obtain the projection data as most of the vendors do not

provide them. Another common way to deal with low-dose CT (LDCT) images is

using iterative reconstruction techniques [30]. These techniques require some prior

information and cost high amount of computation.

Taking into consideration the restrictions caused by the aforementioned methods,

post processing techniques which can be directly applied to low quality images, can

be considered as a useful alternative. Among them, deep neural network based ap-

proaches have been used commonly in the area of CT image denosing. In the medical

domain, the application of deep convolutional neural networks (DCNNs) has shown

a great success in reducing the noise level in LDCT images, thus minimizing patient

radiation exposure while preserving image quality and diagnostic power [31, 7, 8].
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1.2 Objective and Scope of the Thesis

The aim of this thesis is to apply convolutional neural networks to computed tomogra-

phy scans of porous rock samples to increase the quality of reduced exposure images

by reducing the associated noise. In other words, training the proposed network by

mapping low-quality images to higher-quality images, the network is expected to act

as a denosing filter once applied to a given low-dose scan.

There are several advantages of reducing the scanning time. First, it causes an in-

crease in temporal resolution; meaning that even though the exposure time is less-

ened, higher-quality images can be obtained. Thus, capturing the dynamics of certain

type of experiments can be possible due to the reduced scan time. Secondly, image

quality has a strong effect on the accuracy of the estimated rock properties in digital

rock physics applications. With the help of the trained network, noise reduction is

accomplished in the low-quality images. This will also help in the image processing

steps like resolution enhancement. Third, lower scan times have a positive impact on

the lifetime of the X-ray tube or the filament.

For this work, actual micro-CT data was generated by a FEI Heliscan microCT op-

erating with a cone-beam. The machine was configured to perform 1800 projections

per revolution. Tube voltage and current are adjusted as 85 kV and 72 mA, respec-

tively. Two datasets were acquired by altering the exposure time for each projection.

The first one is composed of the low-quality, low-dose scans which were produced by

setting the exposure time as 0.5 s. The second one is composed of the high-quality,

higher-dose scans resulting from 1.4 s exposure time for each projection. Subse-

quently, a U-net based DCNN was trained using two different loss functions namely,

the mean squared error (MSE) and the structural similarity index measure (SSIM).

The results were assessed both quantitatively and qualitatively. For the quantitative

analysis, two commonly used image metrics, peak signal-to-noise ratio (PSNR) and

the SSIM were utilized. Lastly, artificial datasets were created based on the pre-

dictions, which are deemed as the ground truth, from the previously trained neural

network such that they mimic both low-exposure and high-exposure scans. These

datasets were used to validate the prediction power of the neural network at denoising

the low-quality images.
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1.3 Outline of the Thesis

This thesis is divided into four chapters. In Chapter 1, the problem is defined and

the motivation behind this work is given. Later, the aim of the thesis is explained. In

Chapter 2, the theory of deep neural networks is outlined with a special emphasis on

convolutional neural networks, which play a major role in this study. In Chapter 3,

the proposed network and the datasets on which the network is trained are explained

in details. Additionally, the obtained results are reported and discussed. In Chapter 4,

the conclusion of the thesis is made and future research topics are elucidated.
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CHAPTER 2

DEEP NEURAL NETWORKS

Deep learning which is a subfield of machine learning, uses the power of multi-

layered structure of algorithms called neural networks which are inspired by the

functioning of a human brain to solve various problems in several fields including

computer vision, speech recognition and natural language processing. With the help

of increased computational power, the application of deep learning algorithms have

become more prevalent.

2.1 Artificial Neural Networks

Neural networks, known as artificial neural networks (ANNs), are composed of nodes

which are representative of biological neurons in animal brains. Each node produces

a single output value which is the weighted sum of all inputs connected to that par-

ticular node. The output value is, then, transmitted to another node, ensuring the

information flow. Besides the input and output layers, neural networks include hid-

den layers between them. In Figure 2.1, an artificial neural network containing two

hidden layers, each having four nodes, is depicted.

In 1958, Rosenblatt [25] proposed the Perceptron which is considered as the ear-

liest ANN. It acts as a binary linear classifier. It has inputs and each input, xi ∈
R, i = 1, 2, . . . , n, has an associated connection weight, wi ∈ R. The first task in the

perceptron is calculating the weighted sum of inputs:

y =
n∑

i=1

wixi + w0, (2.1)
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Input Layer

Hidden Layer 1 Hidden Layer 2

Output Layer

Figure 2.1: A diagram of artificial neural network with two hidden layers.

where y is the weighted sum and w0 is the intercept value and considered as the

associated weight of a bias unit, x0, which is +1. The sum can also be written as a

dot product:

y = wTx, (2.2)

where w = (w0, w1, . . . , wn)
T and x = (1, x1, . . . , xn)

T are the vectors containing

all of the weights and inputs including the bias weight and its corresponding input.

Since the perceptron maps its input x to a single binary value, the next step is to use

a threshold step function serving as an activation function:

φ(a) =

1, if a > 0,

0, otherwise,
(2.3)

where φ represents a threshold step function and a is the input of the function. A

schematic diagram describing the perceptron is shown in Figure 2.2.

Equation (2.1) defines a hyperplane that can be used to separate the input space into

two regions. If the learning set is linearly separable, which means there exists at

least one hyperplane that can classify the data that has two class labels, the weights
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∑
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wi xi + w0 > 0
0, otherwise

Bias

Figure 2.2: A single layer perceptron.

and bias term can be learned such that the perceptron can accurately discriminate the

training set.

2.1.1 Deep Feedforward Networks

Deep Feedforward Networks, or multilayer perceptrons (MLPs), are the deep learning

models in which the information moves in only one direction, i.e., forward, from

the input nodes to the output nodes. MLPs consist of an input layer, at least one

hidden layer, and an output layer. Each node, except for the input layer nodes, uses

a nonlinear activation function because such transformation of the input is needed to

approximate a nonlinear function. It is mathematically proved that any feedforward

neural network with at least one hidden layer has the ability to approximate any Borel

measurable function [16]. In this regard, multilayer feedforward networks behave as

universal approximators. These networks are generally used for supervised learning

tasks where the purpose is to learn a function that maps an input to an output based

on a set of training examples. Each example is a pair consisting of an input and

corresponding output vector, the latter is usually called as the label. A feedforward

neural network takes an initial signal, x ∈ Rn and outputs y ∈ Rm, where n and m

refer respectively to dimensions of input and output space.
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Before introducing the computation of the forward pass of a feedforward neural net-

work, there are some definitions need to be made. Let Sk represent the state of the

kth layer

Sk = σ(WkSk−1 + bk),

where Wk is the matrix corresponding to all the weights for layer k, bk indicates the

vector of biases for layer k. The matrix Wk can be expressed as:

Wk =


w1,1 w2,1 . . . wf,1

w2,1 w2,2 . . . wf,2

...
...

...
...

wf,1 wf,2 . . . wf,p

 ,

where, p and f are the number of nodes in layer k and k − 1, respectively and wi,j is

the weight connecting the ith node of layer k − 1 to the jth node of layer k.

In order to find the next state, an activation function denoted as σ is applied. The

above expression shows the dependency of the state of a particular layer on the pre-

vious one. Therefore, the calculation starts from the input layer and proceeds to the

output layer:

S1 = σ(W1S0 + b1)

S2 = σ(W2S1 + b2)

S3 = σ(W3S2 + b3)

...

SL = σ(WLSL−1 + bL)

Here, S0 is the input vector x and SL is the output vector y, where L denotes the

number of layers (excluding input layer). Once the forward pass is completed, the

error between the ground truth (target values) and the output of the network is cal-

culated. Next step is the learning process where the weights and biases are updated

such that the error would be decreasing.
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Figure 2.3: Sigmoid (Logistic) function.

2.1.2 Activation Functions

In ANNs, the activation function, also known as the transfer function, is applied to a

neuron to calculate its output response. There are linear activation functions as well

as nonlinear activation functions. Nonlinear ones are used more often to increase the

learning power of a neural network when it comes to finding the complex relationship

between the input and output data.

2.1.2.1 Sigmoid Function

The sigmoid function, or the logistic function, is a function that is represented by an

"S"-shaped curve and is defined by the formula:

f(x) =
1

1 + e−x
. (2.4)

The sigmoid function, which is differentiable and bounded, maps any real value to

the range of 0 and 1. The graphical representation of the sigmoid function is shown

in Figure 2.3.

11



Figure 2.4: Hyperbolic Tangent (tanh) function.

2.1.2.2 Hyperbolic Tangent Function

The hyperbolic tangent activation function, or tanh for short, has also an "S"-shaped

curve like the sigmoid function. Contrary to the sigmoid function, the range of the

tanh function is from −1 to 1. The tanh function is given as:

f(x) = tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
. (2.5)

The tanh function produces zero-centered outputs because its range contains both

negative and positive values. This property provides an advantage when optimizing

a neural network’s weights compared to using an activation function like the sigmoid

that has not not zero-centered outputs. Figure 2.4 shows the tanh function.

2.1.2.3 Rectified Linear Unit (ReLU) Function

The ReLU, or the rectifier, is an activation function commonly used in deep neural

networks, especially in convolutional neural networks. If the input is positive the

output will be equal to the input, otherwise, the output will be 0. Thus, the function

can be written as:

f(x) = max{0, x}. (2.6)

As it can be seen in Figure 2.5, the ReLU is a piecewise linear function and not
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Figure 2.5: Rectified Linear Unit (ReLU) function.

differentiable at 0.

The ReLU activation function does not suffer from the vanishing gradient problem

compared to the sigmoid and tanh functions [17]. The problem arises when calcu-

lating derivatives of the activation functions that have high input values. Contrary

to sigmoidal functions whose derivatives approach 0 as the input value gets higher,

ReLU has a constant derivative of 1. This makes ReLU a proper choice for many

deep learning applications.

2.1.3 Optimization of Deep Neural Networks

As described earlier, a deep neural network acts as a composite function from input

to output space. The parameters of the function, also called as weights, controls the

function, i.e., the network, behavior regarding how good the fitting is for a given

training data. The learning process is finding the best combination of weights such

that the error function (also called as the loss function) will be minimized. For that,

one needs to apply an optimization algorithm.

In machine learning, gradient descent based algorithms are commonly used to train

the models. The principle of gradient descent is to update the weights and biases by

moving repeatedly in the opposite direction of the gradient, i.e., the derivative of the
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loss function with respect to the parameters we wish to update. Let J(θ) : Rn → R

be a cost function and θ be the parameters to be updated. The updating mechanism

according to gradient descent algorithm is as follows:

θnew = θold − η∇J(θold), (2.7)

where η is the learning rate, or the step size of the algorithm. The learning rate is

a positive scalar that determines how big a step is taken in the descent direction.

However, care should be taken in setting the rate. If it is too high, there will be a

risk of overshooting the minima. In the opposite case, the rate of convergence will

be low or the algorithm might get stuck in an unwanted local minimum [6]. In (2.7),

∇J(θold) represents the gradient vector whose components are the partial derivatives

of J at θold.

For updating the weights of a network, the derivative of the error term with respect to

each weight should be calculated. One effective algorithm for this task is backpropa-

gation which employs the chain rule while performing a backward pass to adjust the

model’s weights and biases [26].

If the entire training data is used to compute the gradient of the loss function for the

parameter updating, the algorithm is called batch gradient descent (BGD). In this type

of optimization, each iteration is referred to as an epoch as the all training examples

are taken into account for a single model update. For a huge amount of data, the

computation time of the BGD algorithm can be very long.

Another variant of gradient descent, namely stochastic gradient descent (SGD) in

which only one training example is used for each update, can be implemented to

overcome this problem. Stochasticity reveals itself when calculating the derivative.

Instead of the actual graident calculated from the entire dataset, in stochastic variants,

an approximation of the true gradient calculated from a randomly selected training

sample or a subset of the whole dataset is used. Let N be the number of total training

examples. The parameter updating in SGD is given as:

θnew = θold − η∇J(θold;x(i); y(i)), (2.8)

where x(i) and y(i) represents the ith training input and the corresponding label, re-
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spectively. The update expressed by (2.8) is repeated for every i from 1 to N .

However, the most commonly applied approach is splitting the data according to a

predetermined number, called as batch size, into small batches of examples and per-

forming an update for every batches. This method is known as mini-batch gradient

descent (MBD) and enables us to benefit from the strengths of both BGD and SGD.

Since it uses more data points to approximate true gradients compared to SGD, up-

dating steps are less noisy, which decreases the number of iterations for an acceptable

convergence. Moreover, MBD surpasses BGD in terms of the training speed, espe-

cially for large datasets.

2.1.4 Adam Optimization

Adam [19] (short for Adaptive Moment Estimation) is an optimization algorithm and

can be considered as an extension to SGD.

Algorithm 1: Adam Optimization Algorithm
Input: Exponential decay rates for moments estimate β1, β2

Input: Learning rate (stepsize) α

Input: Loss function with parameters θ L(θ)
θ0 ← 0 (Initialize parameters)

m0 ← 0 (Initialize first moment)

v0 ← 0 (Initialize second moment)

i← 0 (Initialize timestep)

while θi not converged do
i← i+ 1

gi ← ∇Li(θi−1) (Calculation of gradients at timestep i)

mi ← β1 ·mi−1 + (1− β1) · gi (First moment update)

vi ← β2 · vi−1 + (1− β2) · gi2 (Second moment update)

m̂i ← mi/(1− β1i) (Computation of bias-corrected first moment)

v̂i ← vi/(1− β2i) (Computation of bias-corrected second moment)

θi ← θi−1 − α · m̂i/(
√
v̂i + ε) (Parameters update)

end

In this algorithm, an adaptive learning rate is calculated for each parameter update,
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meaning that the need for choosing a learning rate manually for each learning session

is eliminated. The algorithm for Adam optimization is given in Algortihm 1.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs), developed by LeCun et al. [20] in the 1980s,

are a specialized class of deep neural networks. They are commonly used in process-

ing data that has a grid-like topology, such as images [13]. As the name “convolu-

tional” indicates, these types of neural networks use a linear mathematical operation

called convolution which is extensively employed in signal and image processing. In

mathematics, convolution can be considered as an operation on two functions such

as:

h(t) = (f ∗ g)(t) =
∫ ∞
−∞

f(τ) g(t− τ) dτ. (2.9)

Here, f and g are two real-valued functions of τ and t is a fixed parameter. The sym-

bol ∗ denotes the convolution operation that is defined as the integral of the product

of the two functions, namely f(τ) and g(t − τ) which is a reversed version of g(τ)

that has been shifted by an amount t. The resulting output function is represented as

h(t). In the realm of machine learning, the function f and g are often called as the

input and kernel, respectively. The function h, on the other hand, is referred to as the

feature map.

CNN based applications usually use multidimensional arrays of data. For example, a

grayscale image can be considered as a two-dimensional array of data consisting of

integer values, each representing the intensity value of the corresponding pixel. Thus,

writing the discrete form of the convolution operation would be more appropriate for

this case. For a given two-dimensional input image I and a two-dimensional kernel

K, (2.9) can be written as:

F (i, j) = (I ∗K)(i, j) =
∑
a

∑
b

I(a, b)K(i− a, j − b). (2.10)

Here, F represents the output feature map. The commutative property of the convo-

lution operation allows us to write (2.10) in the form of:

F (i, j) = (K ∗ I)(i, j) =
∑
a

∑
b

I(i− a, j − b)K(a, b). (2.11)
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The indices i and j are related to the input image I , whereas the indices a and b are

related to the kernel K. In many machine learning applications, an operation called

cross-correlation that does not require flipping the kernel, as opposed to convolution,

is used:

F (i, j) = (I ∗K)(i, j) =
∑
a

∑
b

I(i+ a, j + b)K(a, b). (2.12)

Although cross-correlation differs from convolution in a mathematical sense as de-

scribed above, it is conventionally called convolution in CNN based applications. A

visual example of the convolution operation applied to a two-dimensional image is

given in Figure 2.6. The calculation of the first element in the feature map shown in

Figure 2.6 by using (2.12) can be explicitly stated as:

F (0, 0) =
a=1∑
a=−1

b=1∑
b=−1

I(0 + a, 0 + b)K(a, b)

= I(−1,−1) ·K(−1,−1) + I(−1, 0) ·K(−1, 0) + I(−1, 1) ·K(−1, 1)

+ I(0,−1) ·K(0,−1) + I(0, 0) ·K(0, 0) + I(0, 1) ·K(0, 1)

+ I(1,−1) ·K(1,−1) + I(1, 0) ·K(1, 0) + I(1, 1) ·K(1, 1)

= 9 · (−4) + 1 · 0 + 3 · 1

+ 8 · 2 + 7 · (−1) + 4 · (−3)

+ 6 · 7 + 4 · 4 + 2 · 2

= 26,

where K(0, 0) is located at the center of the kernel. Similarly, I(0, 0) is the center

element of the overlapping portion of the input with the kernel. Since the size of the

kernel is 3×3, a and b take values −1, 0, and 1.

CNNs differ from MLPs in terms of the connectivity structure of the neurons. MLPs

are composed of fully connected layers, that is, every single neuron in a layer is

connected to all the neurons in the previous layer. Contrary to MLPs, CNNs have

convolutional layers that are sparsely connected because the convolutional kernel size

is smaller than the input.
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Figure 2.6: An illustration of a convolution operation applied to a given two-
dimensional input image. The 3×3 kernel shifts over the 5×5 input image, producing
each pixel of the feature map.

2.2.1 Convolutional Layers

In a CNN, convolutional layers are the main building blocks of the model architecture.

The layer takes the input data which is considered as a tensor that has height, width,

and channel dimensions. Then, a filter, also known as kernel, moves over the input

while carrying out the dot product operation with the overlapping patch of the input.

The operation is done such that the matching elements are multiplied, then these

multiplications are summed up. The resulting scalar values create the feature map

that will be the input of the next layer. A nonlinear activation function, such as ReLU

activation, is applied to each entry in the feature map, just like in the case of a fully

connected layer.

The convolutional filter must have the same number of channels as the input. The

filter entries are the parameters that are to be learned by means of an optimization

method. However, single filter is not sufficient enough to capture multiple features

of the input. Hence, many filters are simultaneously used to extract different features

from the input and the channel dimension of the output is equal to the number of

filters used.

As it can be seen in Figure 2.6, when the convolution operation is performed on an im-

age, it reduces the size of the image. Therefore, the image gets shrunk as the number

of convolutional layers applied to it increases, preventing us to build deeper networks.

Besides, corners and edges interact less with the kernel, so the information coming
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Figure 2.7: A schematic representation of convolution of a 6×6 input image. In
order to preserve the spatial size of the input, zero-padding is applied by adding an
additional layer of zeros around the borders, making the size of the padded image
equal to 8×8. A filter of size 3×3 is used for the convolution operation and it moves
one pixel at a time over the input, i.e., the stride number is 1. The resulting feature
map has the same size as the input image.

from these regions tends to get lost. To alleviate the stated problems, a concept called

padding is used. Padding is achieved by adding zeros around the borders of the input,

enabling us to control the output volume. In most cases, it is used to conserve the

width and height of the input. The simple formula for calculating the height/width

dimensions of the output of a convolutional layer is given as:

O =
W −K + 2P

S
+ 1, (2.13)

where O, W , and K indicate the height/width dimensions of the output, input, and

filter, respectively. P is the padding amount and S denotes the stride number. Stride

is the amount by which the filter shifts over the input image.

Think of an input image of size 16×16×3, and 8 filters of size 3×3×3 which are to

be applied to convolve the image. The output channel is equal to the number of filters

and, in this case, it is 8. With single stride and no padding, the output dimensions

will be 14×14×8. If, however, zero-padding is applied to the input image in such a

way that an additional layer of zeros is added around the borders of the image, the

output dimensions will be 16×16×8 preserving the spatial dimensions of the input.

In Figure 2.7, it is shown that the application of zero-padding with a proper stride size

would result in an output having the same dimensions as the input.
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Figure 2.8: Example of max pooling operation.

2.2.2 Pooling Layers

Another type of layer that is used immediately after a convolutional layer is a kind

of subsampling layer and called as the pooling layer. The main function of pooling

layers is to reduce the dimensions of the feature maps, resulting in a decrease in the

number of learnable parameters and the computational cost. The pooling operation is

applied for each feature map, preserving the channel dimension of the input. There

are two commonly used types of pooling operations:

Max Pooling: This type of pooling operation works by selecting the maximum ele-

ment of a patch covered by the pooling filter in the feature map. The selected

elements are used to generate the downsampled feature map. An example of

the max pooling operation is illustrated in Figure 2.8.

Average Pooling: Average pooling operation is done by calculating the average of

the elements in a patch covered by the pooling filter. Hence, the pooled feature

map consists of the average features of each patch presented in the feature map

before the pooling operation is applied. Figure 2.9 visualizes an application of

average pooling operation to a 4× 4 feature map.

In this chapter, we have explained the concept of ANNs by firstly introducing the

perceptron which is a single-layer neural network, that constitutes the building block

of multilayer feedforward neural networks. Then, CNNs which can be considered as

a special class of feedforward neural networks have been discussed to give a detailed

insight into the theory behind the work of this thesis.
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Figure 2.9: Example of average pooling operation.
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CHAPTER 3

DENOISING OF MICRO-COMPUTED TOMOGRAPHY

IMAGES OF ROCK SAMPLES

CNNs are capable of extracting spatial features from the data, which makes them

suitable for image-related applications. That is why CNN-based methods have been

extensively and successfully used in various image processing tasks including image

denoising.

In this work, we use the power of CNNs to learn a nonlinear mapping from a reduced

exposure time micro-CT image of rock sample to its corresponding high exposure

time image. The method is completely data-based and does not require prior knowl-

edge about the noise statistics.

As a CNN model, we use U-net architecture, which was originally developed for

biomedical image segmentation. The architecture is explained in detail in this chapter

along with the datasets used in this work. The methodology of the application and the

obtained results are discussed to evaluate the efficacy of the method.

3.1 Preparation of the Datasets

In this work, real micro-CT datasets generated by using FEI HeliScan MicroCT imag-

ing system were used1. Since the aim is to improve the quality of low-dose scans

which are obtained by reducing exposure time, two datasets were acquired; one of

them consists of scans produced at an exposure time of 0.5 s per projection, and for

1 Dataset is provided by Dr. Guenther Glatz, King Fahd University of Petroleum and Minerals.
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the other one the exposure time was taken as 1.4 s per projection. The scanning was

configured such that there were 1800 projections per revolution and the X-ray tube

voltage and current were of 85 kV and 72 mA, respectively. The total acquisition time

per revolution was 42 min for the high exposure time experiment, whereas reduction

of the exposure time caused more than 60 % decline and resulted in 15 min for the

low exposure time experiment.

A longer exposure time leads to less noisy images because more photons are collected

at the detector. Therefore, the scans collected at 1.4 s constitute the dataset of high

quality images. The other dataset is composed of low quality images procured by set-

ting the exposure time as 0.5 s. A porous carbonate rock specimen having a diameter

of 1.5 inches and a length of about 2 inches was used for the scanning. The resolu-

tion of each obtained image is 2884×2884 pixels and its data type is unsigned 16-bit

meaning every pixel in it can take values ranging from 0 to 65535. It is inefficient to

use a 2884×2884 image for training a neural network. For this reason, by extracting

two patches of size 512×512 pixels at locations around the middle of each image, a

total of 2000 images were prepared for each dataset.

Preprocessing of the raw data is a crucial step before training the model. It involves

all the processes that transform the raw data and data normalization is one of them. In

computer vision tasks, where images are used, data normalization refers to scaling the

pixel values so that we can obtain faster learning process. There are several methods

including min-max normalization, zero-mean normalization and decimal scaling for

data normalization.

In our case, min-max normalization was applied to the data before using it in training

the network. For this type of normalization, a simple formula is used:

value−min
max−min

. (3.1)

Normalization was done for both datasets separately, as a result, the minimum pixel

value in a particular dataset got transformed into 0, and the maximum pixel value into

1. Figure 3.1 shows a random pair from the prepared datasets. The pair consists of

a low exposure time (0.5 s) image and the corresponding high exposure time (1.5 s)

image. Higher noise level can be visually detected in the low quality image.
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Figure 3.1: A random pair of images representing both datasets. The left one is from
the low exposure time (0.5 s), low quality, data and the right one is from the high
exposure time (1.5 s), high quality, data.

3.2 Network Architecture

A U-Net [24] based deep convolutional neural network was used to achieve quality

enhancement in micro-CT images by training the network in a supervised learning

framework. The architecture of the model contains two paths connected by a bridge

section.

First path is the contraction path which is used to capture the context in the image.

This path is also called as the encoder. The encoder consists of three blocks of convo-

lution layers. In each block, three consecutive convolution layers are applied followed

by ReLU activation function after each layer. At the end of each block, max pooling

operation is applied to reduce the size of the feature map.

The second path is the expanding path (also called as the decoder). Transposed con-

volution layer is used in each block before three consecutive convolution layers. The

parameters for each transpose convolution are arranged such that, the size of the im-

age are doubled while the number of channels (depth) is halved. At every step of the

decoder, skip connections were added by concatenating the output of the transposed

convolution layers with the feature maps from the encoder at the same level.

The network is an end-to-end fully convolutional network (FCN), that is, it only con-

tains convolutional layers and does not contain any dense layers as in typical CNNs.
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Figure 3.2: Schematic representation of the proposed DCNN composed of two main
paths: encoder path and decoder path. Each blue box is a feature map with number
of channels attached to its top. The input image is of size 512×512. The network
architecture was designed to make the dimension of output image same as input one.
Skip connections are denoted by long green arrows.

The kernel size used in each convolution layer is 3×3 and the number of filters starts

from 32 and increases up to 128 in the encoder stage. On the contrary, in the decoder

stage the number of filters used in the convolution layers starts from 128 and de-

creases to 32 preserving the symmetry in the network architecture. Figure 3.2 depicts

the whole framework of the network used in this work.

3.3 Loss Functions

A loss function measuring the discrepancy between the network’s predictions and the

target values, the high exposure time scans in this case, needs to be defined so that

it should be minimized during the learning. Two different loss functions were used,

namely, MSE and SSIM to see the impact of them on the performance of the network.

MSE is one of the most prevalent loss functions used for regression problems. In

computer vision tasks, it is computed by averaging the squared intensity differences

of pixels of the images that are to be compared. The MSE loss function for a patch
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P , having N pixels, can be written as in [32]:

LMSE(P ) =
1

N

∑
p∈P

(h(p)− n(p))2, (3.2)

where p represents a pixel value in the patch P , h(p) and n(p) are the values of pixels

in the high quality reference patch and the network’s prediction patch, respectively.

SSIM, proposed by Wang et al. [28], is an image quality metric and used for measur-

ing the similarity between two images. Consider that two aligned patches extracted

from two images which we want to measure the similarity between them. Let x and

y denote these two patches. The SSIM index is given as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3.3)

where µx and σ2
x are the mean and variance of x, respectively. Similarly, µy and

σ2
y refer to the mean and variance of y, respectively. The covariance of x and y is

expressed by σxy. To avoid instability when terms in the denominator are close to

zero, the constants C1 and C2 are added to the expression.

To evaluate the overall image quality, one needs to calculate the SSIM index for

each window moving across the whole image and find the average of them. In other

words, a mean SSIM (MSSIM) index is used to determine the similarity between

two images. For example, let X and Y represent the reference and the distorted

images, respectively. The following expression gives how close Y is to X in terms of

structural similarity:

MSSIM(X, Y ) =
1

M

M∑
j=1

SSIM(xj, yj). (3.4)

Here, M is the number of windows. For each local window the SSIM index is calcu-

lated using the image contents xj and yj at the jth window. Therefore, the SSIM loss

function for a patch P can be written as

LSSIM(P ) = 1−MSSIM(h, n). (3.5)

SSIM is a bounded metric with the maximum possible value of 1. For the two iden-

tical images, the resulting SSIM index is 1, so the similarity is expected to be higher
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as the index value gets closer to 1. That is why the index value is subtracted from 1

in the loss term.

3.4 Network Training

In this section, training of the network will be explained in details. Before training the

network, the data was separated into training, validation, and test sets. In supervised

learning tasks, the aim is to learn a mapping from an input to an output (label), so

there needs to be a set of labeled training examples (input-output pairs) to train the

network. Initially, there were 2000 low quality images which can be considered as the

input data and the corresponding high quality ones, i.e., output data. Firstly, 80% of

the available data was allocated for training. Subsequently, a further split was applied

on the training set to reserve 20% of it as a validation set. This is a common data

splitting approach adopted for training and evaluating a deep learning model.

Besides, in order to see the effect of selecting different validation and training datasets

on the performance of the model, k-fold cross-validation method was used. In k-fold

cross-validation, the dataset is partitioned into k equal folds. One of the folds is kept

for validation purposes and the remaining k− 1 folds are used for training. Then, the

model is trained for k times, giving each fold a chance to be the validation set. We

applied 5-fold cross-validation technique to evaluate the model’s performance on the

5 different validation sets. Each fold consists of 320 images, which means that 1280

images are used for training and 320 images are used for validation for each model

training. The results are presented in Table 3.1.

In both the encoder and the decoder paths of the network architecture, each block

involves three consecutive convolution layers. Actually, we can think of the number

of convolution layers in each block as one of the hyperparameters that can control

the model’s learning ability. Before deciding to put three layers, two layers scenario

was also implemented. However, for our problem, the obtained qualitative results

convinced us to use three convolution layers in each block.

Before starting the training, the weights, that are to be updated during the optimiza-

tion, should be initialized. For layers and nodes using the ReLU activation function,
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generally He [15] initialization method is used. Therefore, the convolutional kernel

weights were initialized using this approach. It was observed that using different

mini-batch sizes has no impact on the performance of the network for our problem.

The mini-batch size was set to be 32, which means that the model weights are up-

dated after 32 samples are fed into the network. Adam optimizer with a learning rate

of 0.0001 was selected for the optimization of the network’s parameters. The cho-

sen learning rate is robust and does not require altering it while training because the

adaptive nature of Adam algorithm assigns a distinct learning rate for each parameter

updating. The hyperparameters were selected such that the model is not overfitting

the training data, i.e., the validation loss does not increase at some point while the

training loss continues to decrease. The model was trained on a tensor processing

unit (TPU) provided by the Google Colab environment, a cloud-based Jupyter note-

book platform. For the implementation of the model, TensorFlow’s Keras module

was used.

3.5 Denoising Results

The proposed network was trained with 1280 training examples to make it learn a

mapping from an image with reduced exposure to its corresponding high quality one.

A set of 320 pairs of images was set to be as validation to monitor the changes in

the validation loss along with the training loss. The validation loss is not used for the

gradient calculations to update the weights. It may be used to detect overfitting, which

manifests itself when the validation loss starts to increase at some point while the

training loss continues to fall. This indicates that the model is overfitting the training

data and fails to generalize well to additional data, thus, damaging the predictive

power of it. The learning curves of the model both for MSE and SSIM loss functions

are depicted in Figure 3.3. The validation loss in both cases, decreases along with the

training loss and does not start to increase after a certain number of epochs, which

indicates that the model is not overfitting, therefore, is ready to be evaluated against

the test dataset.

In Table 3.1, the evaluation results for 5-fold cross-validation method is given. The

method was applied for both MSE and SSIM optimized networks. The validation
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(a) (b)

Figure 3.3: The generated learning curves during the training of the network using
(a) MSE as loss function and (b) SSIM as loss function. Both plots include training
and validation error curves.

Table 3.1: 5-fold Cross-validation Results
Training set Validation set Validation loss (MSE) Validation loss (SSIM)
Folds 2,3,4,5 Fold 1 3.80× 10−4 0.21

Folds 1,3,4,5 Fold 2 3.95× 10−4 0.21

Folds 1,2,4,5 Fold 3 3.83× 10−4 0.20

Folds 1,2,3,5 Fold 4 3.89× 10−4 0.20

Folds 1,2,3,4 Fold 5 3.82× 10−4 0.21

loss of each training is stated. As it can be clearly seen, the variance of the validation

losses is too small. This indicates that changing the training set has no impact on the

performance of the model, meaning that the hold-out method is a good choice in our

case.

To assess the performance of the trained model on the unseen data, we use the test set

which is composed of 400 example pairs. A randomly selected pair from the test set

and the denoising outputs of the network based on both loss functions are shown in

Figure 3.4. It is visually clear that the network is able to remove noise significantly

regardless of the loss function being used while training.

Nevertheless, it was observed that while eliminating noise, different losses tend to

highlight different features of the porous media. The network optimized by MSE loss

was revealed to be more sensitive to fine scale pore space than the network optimized

by SSIM loss. As it can be seen in Figure 3.4b, SSIM based reconstruction gives
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(a)

(b)

Figure 3.4: Denoising results of a randomly selected example from the test dataset.
(a) A pair of images from the test set. The left one is a high exposure time scan
(label) and the right one is the corresponding low exposure time scan (input). (b)
The network denoising results. The left one is the reconstructed image predicted by
the MSE optimized network and the right one is the result of the SSIM optimized
network.

smoother textures and sharper boundaries.

For the quantitative assessment of the improvement, we use two different image met-

rics, namely, SSIM and PSNR. PSNR is a commonly used quality metric in image

processing. It is defined as the peak signal-to-noise ratio between two images and

expressed in decibels. It gives us a quantitative measure of how close a distorted im-

age to the original one. The greater the value of PSNR, the better the quality of the

distorted image is. The calculation of the PSNR is given by

PSNR = 10 · log10
(MAX2

I

MSE

)
, (3.6)

31



(a) (b)

Figure 3.5: Histograms of the quality metrics calculated for the test set. The filtered
images are the predictions of the network optimized by MSE loss. (a) Histogram of
the SSIM values. (b) Histogram of the PSNR values.

where MAXI is the maximum possible pixel value.

In Figure 3.5 and Figure 3.6, histograms of both SSIM and PSNR values calculated

for the test set are demonstrated. Each histogram shows the frequency distribution of

the quality metric values computed with respect to the high exposure scans. The first

distribution (before filtering) is indicating the values calculated for the low exposure

scans and the second one (after filtering) shows the distribution of the values calcu-

lated for the denoised scans filtered by the trained network. The test dataset consisting

of 400 image pairs was used for the evaluation and resulting metric values have shown

remarkable success of the trained network. From a quantitative point of view, as can

be seen in the histogram plots, both losses resulted in similar metric improvements. It

is clear that the reconstructed images are far superior in quality to those with reduced

exposure, as evidenced by the substantial increase in metrics calculated with respect

to the high exposure images.

Furthermore, intensity profiles were taken along a horizontal line, which consists of

a single row of 512 pixels, both on a random test pair and the corresponding re-

constructed images to show the network’s denoising power. Figure 3.7 shows the
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(a) (b)

Figure 3.6: Histograms of the quality metrics calculated for the test set. The filtered
images are the predictions of the network optimized by SSIM loss. (a) Histogram of
the SSIM values. (b) Histogram of the PSNR values.

random pair from the test set and the corresponding outputs suggested by both MSE

and SSIM optimized network. The white lines are the cross sections along which the

profiles are taken. The pixel intensity profiles are depicted in Figure 3.8 in order to

show the success of the trained network to denoise a given low exposure time scan.

More importantly, the network is able to distinguish noise from the other high fre-

quency contents like edges, corners, and sharp structures, thus, retaining the critical

components of the image.

Surprisingly, if we look at the scans predicted by the network, we see that they are not

only superior than the low-dose scans (inputs) but also greater quality compared to

the high exposure time scans (labels). Since, because of the nature of a CT scanning,

there is some level of noise associated even with the images collected at an exposure

time of 1.4 s (labels), we do not have an absolute reference, i.e., ground truth, to

verify the improvement. Therefore, we further create an artificial dataset based on

the images denoised by the network to validate the results obtained by training the

proposed architecture. We present this in the next section.
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(a)

(b)

Figure 3.7: A random pair from the test set and the denoising results predicted by the
trained network. (a) A high exposure time scan (left) and the related low exposure
time scan (right). (b) Predicted images by the network trained using the MSE loss
function (left) and the SSIM loss function (right). The cross-sectional profiles were
taken along the white horizontal lines depicted on each image.
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(a)

(b)

Figure 3.8: Pixel intensity profiles taken along the lines indicated in Figure 3.7. (a)
The profiles of the high (left) and low (right) exposure time images. (b) The profiles
of the MSE reconstructed (left) and SSIM reconstructed (right) images.

3.6 Artificial Case

For the reasons outlined in the previous subsection, an artificial case is created, to be

used later in training the network proposed in this work. Because the ground truth

was known, the comparison between the predictions and the ground truth become

possible, as a result, the conclusion deduced from the real micro-CT case could be

verified.

In CT imaging the noise consists of mainly two parts: Poisson noise arising from

the fluctuations of the number of X-ray photons at the detector and Gaussian noise

produced during the detector acquisition [9]. For micro-CT systems, as opposed to

medical CT systems, the dominant noise is mostly characterized by Poisson distribu-

tion.

Previously obtained denoised images from the SSIM optimized network are selected

as the ground truth. Then, different levels of Poisson noise are added to these images

to create two datasets, in the hope that they would mimic low and high exposure time

scans. In Figure 3.9, an artificially created training pair consisting of high and low

quality images and the ground truth from which the images are created are given.
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Figure 3.9: An example pair from the artificially created training data and the cor-
responding ground truth. From left to right: artificial low exposure image; artificial
high exposure image; the reference image (ground truth).

Subsequently, the network is trained such that it learns to map from the artificial low

exposure images to their corresponding high exposure ones. Similar to what has been

done for the real micro-CT data previously, 80% of the data is reserved as the training

set and the remaining amount is set to be the test set. The training set is further split

into training and validation set in the ratio 80:20, meaning that 20% of it constitutes

the validation set.

The test dataset are, then, used to assess the performance of the network against

the reference images. Consequently, the quality metrics, were calculated using the

reference images. Figure 3.10 depicts an example from the test set along with the

network’s prediction and the ground truth for this particular example. The average

values for the SSIM and PSNR of the artificial high quality images are 0.42 and 27.5,

respectively. On the other hand, the images denoised by the network show a great

improvement, compared to the labels, reaching the average SSIM of 0.97 and PSNR

of 32.5. The histogram plots for the metrics are given in Figure 3.11. Each histogram

shows the frequency distribution of the quality metric values computed with respect

to the ground truth. It is clearly seen from the distributions that the CNN predictions,

i.e, denoised images, are closer to the ground truth in terms of the quality metrics.

Hence, the results derived through the synthetic dataset testified the findings of the

real micro-CT application where the ground truth was not available.
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Figure 3.10: An example from the artificial test set. From left to right: artificial
low exposure time image (input); artificial high exposure time image (label); the net-
work’s output (denoised image); the reference image (ground truth).

(a) (b)

Figure 3.11: Histograms of the quality metrics calculated for the artificial test set.
The values are calculated with respect to the reference images (ground truth). (a)
Histogram of the SSIM values. (b) Histogram of the PSNR values.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

CT is a powerful imaging tool exploited for different applications in several disci-

plines. In reservoir engineering, CT-derived digital images of rock samples allow

detailed observation of microstructures of porous media and estimation of the rock

properties that are vital for reservoir characterization. The quality of the tomographic

images has a strong effect on the accuracy of the estimated properties. One factor

that has an impact on the quality of the resulting scans is the X-ray exposure time

at each projection while scanning the sample. Increased exposure times naturally

yield better quality images by lowering the associated noise. Unfortunately, long scan

times prevent certain processes to be captured effectively, especially when it comes

to micro-CT applications. On the other hand, decreasing the exposure times leads to

more noisy images, which endangers the reliability of the estimates based on these

images.

As a result, several techniques have been proposed to reduce the noise associated with

low-dose scans. Among them, deep learning driven approaches have gained consid-

erable attention. They do not require prior information about the noise characteristics

or the raw projection data which is hard to reach in most of the cases.

In this thesis, a U-net based DCNN is trained on a set of micro-CT scans of a car-

bonate rock sample to improve the quality of the reduced exposure time images. The

proposed network shows a great success in reducing the exposure time more than

60% while at the same time increasing the quality. More importantly, the DCNN fil-

ter was able to distinguish between noise and other high frequency contents such as

grain boundaries and sharp edges.
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In this study, the network is optimized by two different loss functions, namely the

MSE and SSIM in order to analyze the impact of changing the loss function. It is

revealed that both functions give similar results in terms of quantitative assessment.

Nevertheless, they seem to emphasize different structures of the data when we evalu-

ate the results visually. The MSE optimized network is better at detecting fine-scale

pore spaces, whereas the SSIM optimized network suggests sharper boundaries with

smoother textures.

To verify the previously obtained results, an artificial case is created by assuming that

the previously denoised images constitute the ground truth, which enables us to verify

the results obtained from the real micro-CT dataset. The network, then, is trained on

the artificially created images in a way that it maps synthetic low quality images to

their corresponding synthetic high quality ones. The resulting predictions were better

in quality compared to the labels according to the evaluation done with respect to the

reference images (ground truth).

To sum up, in this thesis, a CNN based approach, which is completely data-driven and

can be applied directly to the CT images without the need for designing a conventional

filter, is shown to be successful at reducing the noise introduced by the low exposure

times. This means that one can obtain good quality CT scans without requiring long

acquisition times.

In CT applications, it is known that reducing the number of projections, like in the

case of reducing the X-ray flux, causes less acquisition times, while, negatively af-

fecting the image quality. Therefore, in the future, the network utilized in this work

can be used for the problem of reduced number of projections. The major drawback

of the method, of course, is that it requires a significant amount of data. This can be

overcome by using the power of transfer learning. Another possibility is to investi-

gate different network architectures. Generative adversarial networks are also known

to be effective for image denosing tasks and they can also be employed in the area of

CT imaging for reservoir rock samples.
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